6 Multi-Benefit Resources


Embedded Energy in Water Studies 1, 2 and 3

Author: California Public Utilities Commission (CPUC) (2010)
Geography:
Level of Detail: ,

Availability:

Water Management Strategies: , , , , , , , , , , , , , , , , , , , , , , , ,

Specific Benefits or Trade-offs: , , , ,


CPUCs Embedded Energy in Water Studies provide a California statewide assessment of energy use by the water sector and energy use by water customers. There are three separate reports, each including supporting appendices and materials, that document methodology, data collection, case studies, and findings of the investigation.

Green Infrastructure Opportunities and Barriers in the Greater Los Angeles Region

Author: U.S. EPA (2013)
Geography:
Level of Detail:

Availability:

Water Management Strategies: , , , , , , , , , , , , ,

Specific Benefits or Trade-offs: , , , , , , , , , , , , ,


Green Infrastructure Opportunities and Barriers in the Greater Los Angeles Region analyzes the regulatory barriers to installing green infrastructure in Los Angeles. The types of green infrastructure projects discussed in the report include bioretention cells, bioretention strips/swales, infiltration basins/swales/trenches, planter boxes, constructed wetlands, rainwater capture, permeable pavement, and drywells. The report defines the regulatory landscape for green infrastructure in California, identifies potential for fulfilling multiple regulations and requirements through green infrastructure projects, and lastly, examines the regulatory barriers to green infrastructure implementation.

LA Sustainable Water Project: Los Angeles River Watershed

Author: Mika et al., UCLA Grand Challenges (2017)
Geography:
Level of Detail:

Availability:

Water Management Strategies: , , , , , , , , , , , , , , , , , ,

Specific Benefits or Trade-offs: , , , , ,


LA Sustainable Water Project: Los Angeles River Watershed provides an in-depth analysis of the potential future opportunities for water recycling, stormwater capture, groundwater recharge, and water quality improvements along the Los Angeles River. The analysis takes into account current water supply and water quality projects and management practices along the river. The report deduces that more work is needed to better understand optimal levels of stormwater capture and water recycling along the river so as to balance the impact on in-stream flows.

Implications of Future Water Supply Sources for Energy Demands

Author: Cooley & Wilkinson, Pacific Institute, WateReuse Research Foundation (2012)
Geography:
Level of Detail: ,

Availability:

Water Management Strategies: , , , , , , , , , , ,

Specific Benefits or Trade-offs: , , , , ,


Implications of Future Water Supply Sources for Energy Demands describes the Water-Energy Simulator (WESim), an easy-to-use analytical tool for evaluating the energy and greenhouse gas (GHG) implications of water management decisions. In this report, energy is considered for (1) source water extraction, (2) water conveyance, (3) water treatment, (4) water distribution, (5) wastewater collection, and (6) wastewater treatment. WESim can include commercial and residential end uses of water and energy requirements for end uses. The report includes case studies utilizing WESim by the Santa Clara Valley Water District and Denver Water.

Water Storage Investment Program Technical Reference

Author: California Water Commission (2016)
Geography:
Level of Detail: ,

Availability:

Water Management Strategies: , , , , , , , , ,

Specific Benefits or Trade-offs: , , , , , , , , , , , , , , , , , , , ,


Water Storage Investment Program Technical Reference details the methodology for quantifying the co-benefits or adverse impacts of water storage projects under California’s Water Storage Investment Program (WSIP). The report outlines methods for quantification of various co-benefits and adverse impacts, providing guidance on defining future site conditions, calculating physical changes, monetizing project benefits and costs, comparing benefits and costs, properly allocating costs to beneficiaries, determining cost-effectiveness and public-benefit ratio, and evaluating sources of uncertainty. Projects that quantify public benefits following these methodologies are eligible for California state bond funding to pay for the public benefits.

California Water Plan, Update 2009, Volume 2: Resource Management Strategies

Author: California Department of Water Resources (2009)
Geography:
Level of Detail: ,

Availability:

Water Management Strategies: , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Specific Benefits or Trade-offs: , , , , , , , , , , , ,


The California Water Plan presents a guide on water management strategies that can provide multiple benefits both regionally and statewide in California. The management strategies are organized by goals, such as reducing water demand, improving operational efficiency, or improving water quality, and the benefits are categorized under water supply, drought preparedness, water quality, operational flexibility, flood impacts, environmental benefits, energy benefits, recreation, and groundwater overdraft risk. The report also includes guidance on the quantitative analysis of multiple benefits for policymakers and water resource managers.