Blog

Pacific Institute Insights is the staff blog of the Pacific Institute, one of the world’s leading nonprofit research groups on sustainable and equitable management of natural resources. For more about what we do, click here.

  • Notes from the Field: Community Learning Sessions in Malang

    by Misha Hutchings, Research Associate
    July 30, 2011

    At the beginning of one of the WATER SMS Project learning sessions in Malang, Indonesia, resident Pak Suep said, “We feel that we are small people. We don’t have any right to complain.” By the end of a learning session in the Klojen district of Malang, Ibu Lis, energized by the activity and passion of her fellow participants, stated, “This is an amazing group –I think everyone in here should become leaders and legislators so we can accomplish these goals!”

    community_learning_session_malang

    On July 26 and July 28, Indonesian NGO PATTIRO, the Pacific Institute, and Nexleaf Analytics conducted three learning sessions with communities in Malang, East Java province. The goal was to understand what improvements residents wanted to see in water services, recognize what information they needed to improve their water supply, and identify organizations and agencies that could respond to these needs. The learning sessions in Malang and engagement sessions with water managers and stakeholders will help the Pacific Institute and our partners define key aspects of the Indonesia WATER SMS system, a mobile-phone-to-web-based communication and transparency system to improve water services in Indonesia.

    Information from these learning sessions will be taken to the local government and the water utility to help understand and determine what issues agencies can commit to immediately resolving, what they can incorporate into planning, and how they can provide necessary information and tools to respond to community requests. Based on this, issue areas for the WATER SMS tool can be defined.

    Learning sessions were conducted in Klojen, Kedungkandang, and Blimbing districts. In each of the sessions, 25-35 engaged and enthusiastic participants brimmed with ideas on what improvements they needed, who should be responsible, and how to continue this process. The problems identified with PDAM (government water utility service) included high costs, lack of transparency or consistency in water pricing, low water volume at certain places and times, lack of service in some areas that had already paid, poor water quality, and poor complaint redressal. Some residents were also served by local water user groups called HIPAMs. People complained that HIPAM services were not consistent, and that they often did not get enough water.

    Many residents requested further information to learn if their water was safe to drink, when water services would be shut off, and about transparent rate information. Residents who self-supplied water through private wells also wanted information on how to protect this supply. “I just want to know what the solution is — when I was a child, even in the dry season water existed all the time. Now, in dry season there is absolutely no water,” stated Ibu Srihanaratani during the Klojen session.

    Participants at several of the learning sessions noted that the increase in malls, government buildings, and paved areas provided no way for water to infiltrate and recharge groundwater supply. “We need integrated septic systems and forests and ways for the water to enter the ground,” said Ibu Kris from Kedungkandang. If we keep and protect our water supply, we will have no problem with water.”

    The learning sessions in Malang kicked off a very exciting series of engagement sessions in Malang and Makassar that will lead to the development of a WATER SMS system to meet the information and communication needs of all water sector stakeholders, and ultimately, help improve water services for the poor in Indonesian cities.

    • Twitter
    • Facebook
  • Notes from the Field: A Success Story in Participatory Irrigation Management in India: The Waghad Farmer Managed Irrigation System

    by Veena Srinivasan, Research Affiliate 
    July 15, 2011

    Awards for Waghad Irrigation SystemLast week I visited a farmer-managed irrigation system in India’s Waghad Medium Irrigation Project. I passed by the Waghad Project in my quest to locate Multiple-Use Water Services (MUS) systems around the city of Nasik, India. The Pacific Institute is currently working on understanding multiple-use as a potential for funding for improvements in the water sector. Although Waghad is not strictly an MUS case because of its size, it is an interesting case study because it highlights how “soft” options alone — information, participation, social norms, and wise use of water — can achieve dramatic results.

    The project represents a highly successful “bottom-up” farmer taking over of the irrigation system and the huge prosperity it has brought to the region. What was once a decaying irrigation system where farmers received no water and the Irrigation Department received no revenue is now a thriving region where incomes have grown 50-fold and Irrigation Department Revenues went up 10-fold within 15 years. The success of this project, in part, resulted in the state government passing the Maharashtra State Farmer Managed Irrigation Act in 2005, in a bid to replicate the success elsewhere. The project’s success has been recognized by many awards including one from the Confederation of Indian Industry (CII) which allowed the project to compete for a water efficiency award as a private company.

    There are 24 Water User Associations (WUAs) and nine Lift Irrigation User Associations in the Waghad system. There is also a Project Level Association (PLA), which co-ordinates between the WUAs and the Department of Irrigation. This blog entry (the first of several to come) is based on interviews with farmers, the local NGO, and members of the PLA and WUAs. The interviews were conducted at two locations: Ozar village, which houses the offices of three tail-end WUAs, and Mohadi village, where the PLA office is located.

    History and Background
    Ozar is a village 18 km from the city of Nasik. Ozar village falls under the command area of a Medium Irrigation Dam called the Waghad Dam. The command area of the Waghad Dam is about 10,000 Ha (hectares) and serves 15,000 farmers. The average land holding is about 1.5 Ha. About 10% are smallholders with holdings of 0.5 Ha or less. The dam is located 45 km upstream of Ozar.

    The Situation in the Late 1980s
    Until 1991 the dam was managed entirely by the Department of Irrigation. Ozar, which falls at the tail end of the command area, was receiving no water at all. But even in the head reaches of the Waghad canal system, farmers were barely earning an income of Rs 2,800/Ha, and farms at the tail-end of the minor canals in the head reaches were receiving very little water. The Irrigation Department’s revenue from the entire project was barely Rs 2 lakhs (about $12,000 in 1990) according to Shri Kulkarni, a local farmer who showed me around. These numbers were backed up by other members sitting in the PLA office. Corruption was rampant and farmers had to bribe irrigation officials to get any allocation of water at all. As the revenue from the project was so low, the Irrigation Department had no incentive to maintain the structures and the structures were gradually degrading.

    Importantly, at the time the prevailing attitude among the farmers was that it was the government’s job to deliver water and the farmer’s job to receive it. Farmers were uninterested in taking over the government’s “job” – even though they were unsatisfied with the situation. Mr. Kulkarni opined that this was a distinct shift from the long history of community-level water resources management in India during the colonial period where water resources management was bureaucratized and run by British engineers who viewed it their job to deliver water and collect taxes. However, the poor state of the system meant that the level of trust in the Irrigation Department was very low. Lacking any trust in the ability of the Irrigation Department to deliver water, the farmers did not attempt to cultivate any “risky” high-value vegetable crops and as a result their income was very low. Wealthier farmers had borewells which they had to run round the clock.

    The Transformation
    The Ozar Water User Association was formed in 1991, one of three WUAs formed with the help of a local NGO founded by Shri Bapu Rao Upadhyay. Shri Upadhyay, founder of a local NGO called Samaj Parvitan Kendra (translates “Societal Change Centre”) was a visionary who understood the difficulties the region was suffering from and had the foresight to argue that if water was not managed it would one day “burn like oil.”

    Initially, it was not difficult to persuade the tail-end farmers to agree to form a WUA. They were receiving absolutely no water from the project. Once they co-ordinated and formed the WUA, they collectively worked to improve the physical structures and persuaded the Irrigation Department to meet their obligations to supply water. As Shri Bharat Kulkarni, who now heads Samaj Parivartan Kendra, explained, the initial change was establishing trust between farmers. This was necessarily a gradual process – it involved building trust farmer by farmer over a period of 15 years. Once they showed some early successes that the WUA could collectively bargain for water, more farmers joined in.

    It was clear to me why the tail-end farmers who were miserably poor were willing to join the WUA. But the big question is why the head-end farmers joined in. Older members who were active 20 years ago said that even the head-end canals were not receiving much water: only “head-end farmers in head-end canals were actually getting water.” The Irrigation Department was not maintaining the structures at all and the water was not being released at times they needed it and Irrigation Department staff needed to bribed to open the canal outlets. The farmers were frustrated that they were being asked to pay for water and bribe officials for water they could not rely on.

    As Shri Kulkarni put it – even though everything appears “fair and lovely” now, the present success is because of protracted negotiations and trust-building over 20 years. Waghad appears to be exceptional in remaining untouched by caste divisions and political rivalry. Other farmer-managed systems in India have not been similarly lucky in managing to stay depoliticized, particularly in the elections of Chairman of the PLA. As one board member in the PLA put it, “We leave our differences at the door when we enter the WUA building – otherwise the whole organization would fall apart – our focus is on water and only water.”  I was not able to understand how the WUAs managed to work this miracle although I asked this question in different ways a few times. The only answer I could get was that there were inspiring leaders who were extremely committed to the cause of maintaining a de-politicized environment within the WUAs and ensured that these became part of the rules early on by simply not permitting any political or religious rhetoric.

    The Current Picture
    In 2011, the Waghad Irrigation Farmer Managed System is touted as an exemplary case of farmer-managed irrigation. The Project has won numerous state and national level awards and local WUA members are regularly invited to guest lecture or conduct training sessions at Participatory Irrigation Management (PIM) workshops all over the country. Today the Irrigation Department revenue from the project is almost Rs 27 lakhs (about $60,000).

    Farmers said that their average income from agriculture is in the range of Rs 1,20,000 per Ha (about $2500) — almost 50 times what it was 20 years ago. In an area where they could not dream of growing fruits and vegetables, farmers now regularly grow perennial crops and vegetables which require high levels of reliable water supply. Farmer participation in the WUA has stayed consistently high for 20 years.

    What Steps Were Taken
    Based on my conversations with farmers, the success of the Waghad project can be attributed to two types of measures: first, development of robust water institutions around monitoring and enforcement and second, widespread adoption of water efficiency measures. I will discuss this more in next month’s entry!

    • Twitter
    • Facebook
  • Notes from the Field: Field Report from Hivre Bazar

    by Veena Srinivasan, Research Affiliate 
    July 1, 2011

    In the first week of July, I had the pleasure of visiting Hivre Bazar, a village close to the town of Ahmednagar in Ahmednagar district of Maharashtra in India. Hivre Bazar is considered of the biggest success stories of the participatory watershed movement in India. Twenty years ago, a 1992 household survey showed over 90% of the families in the village were below the poverty line. There was a lot of in-fighting and high rates of alcoholism among villagers. Following the death of one villager after a partisan fight, many moved out of the main village center — either to live nearer their fields or to urban areas. Drinking water was scarce and agriculture was precarious. Poor farmers depended on rain-fed agriculture; the richer farmers were bore-well dependent — often running their pumps round the clock. The village was considered unsuitable for government schemes — no government official was willing to visit the village much less waste his time trying to implement a scheme in the village.

    In a short space of twenty years, Hivre Bazar has been completely transformed. Today, no family in Hivre Bazar is below the poverty line. Despite successful practice of family planning, the population of the village has increased by 50% because of reverse migration. Almost 100 families that had migrated to urban areas have returned. Hivre Bazar has been declared an “Ideal Village.” The head of the village (sarpanch) whose vision transformed it has been appointed to lead the Maharashtra state “Adarsh Gaon Yojana” (Ideal Village Scheme) to replicate its success in over 100 selected villages statewide. There is no shortage of drinking water or irrigation water.

    hivre_bazar_awards

    One of several rooms housing the awards won by the village of Hivre Bazar

    The village has now received so many awards that three rooms are insufficient to house the medals, trophies, and certificates. A field trip to the village is now mandatory in the training of the prestigious Indian Administrative Service (IAS) candidates both at the federal and state levels. The village is also used as a case study in military training, NGOs, social work programs, etc. Each day 500 visitors come to the village to learn how this transformation was achieved — so many that it became necessary to train tour guides and ask visitors to pay. I myself witnessed busloads of Masters of Social Work students from a local college arrive as part of a mandatory field trip to listen to a lecture by the tour guide Mohan, who also showed me around the village.

    However, despite the high level of “development tourism,” the primary income source remains agriculture. There are no stores or restaurants in the village and the only non-agricultural jobs appear to be in the school, librar,y and visitor center. I saw no evidence of any other kind of commercial activity. Instead, piles of produce (onions, potatoes, etc.) were seen in front of every farm. Now that the village has become a brand in itself, they have plans to directly market “Hivre Bazar Organic Produce” at high end stores in urban areas.

    hivre_bazar_streets

    Litter-free streets with cement houses, wide roads in Hivre Bazar.

    Importantly, there is of pride among the villagers — there is not a spec of litter anywhere on the wide streets of the main village; each house is perfectly maintained; the color schemes (!) in the homes are coordinated. The school motorized pumps run on solar energy; the school buildings are well maintained. The village has been successful in implementing all kinds of government schemes — the village was one of the first to mandate pre-marital HIV testing for all. Hivre Bazar is also an open-defecation-free village and 100% of the homes have toilets. The area around the village is lush with vegetation and all kinds of birds could be seen. Importantly, all this is achieved by consensus. The Gram Sabha (village general body) meetings are well attended by at least one representative from each household. I was told it is common to have 1000 people attend the Gram Sabha meeting (the village population is only ~1300) — entire families come and make a picnic of the event.

    If there is any dissent it is not voiced. The phrase “the villagers know the Gram Panchayat is acting in their best interest” was repeated a few times. This explanation seems very plausible — the contrast between Hivre Bazar’s prosperity and poverty of nearby villages is too stark for villagers to complain. Even the landless have benefited from the prosperity as even those families are no longer below the poverty line.

    • Twitter
    • Facebook
  • Notes from the Field: Safe Guarding Water Quality – A Concern for All

    by Dr. John Akudago, Senior Research Associate
    June 26, 2010

    Ghana polluted water

    At Lamsheigu, a Surburb of Tamale, Ghana, and about 30 km south of Savelugu, there is a surface dam which is being used by people for domestic purposes. Close to the dam is a vehicle washing bay, for the purpose of easy access to water. This dam is polluted from oils and dirt from the surrounding and vehicles that are washed.

    Though it was mentioned that the water is used for bathing and cooking, there is not any form of household-level treatment before use according to some women I spoke to. The photo above shows the dirty water in the dam, and the photo below, some water being fetched for domestic consumption. When asked if they had knowledge of any water-related diseases, the answer was “yes,” but no one could give reasons for not treating the water before use. The people might boil the water to kill bacteria but what happens to the film of oily layers on the water is question for which no one has sought the answers.

    Ghana domestic water

    The vehicle washing bay owner might be earning daily income from his job but little does he think of the harm being caused to the only precious dam that serves a large population at Lamashiegu. It is therefore very important for education to be given to all people staying close to the dam to know the contribution of their actions to polluting the dam.

     

    • Twitter
    • Facebook
  • Notes from the Field:Need for Water Resource Management and Adequate Sanitation

     by Dr. John Akudago, Senior Research Associate
     June 2, 2010

    mahama_azundo_photo.jpg“Water is life,” says 60-year-old Mahama Azundo of Gbulung, a community 5 Km East of Savelugu in the Northern Region of Ghana. He explained that with water he could provide enough food for his family, be safe from water borne-diseases, and also get other development projects such as building his mud house and community shea-butter processing accomplished. Mr. Mahama – standing by a hand-dug well that was provided by Adventist Relief Agency (ADRA) over 20 years ago and a dam that was constructed in early 1960s mainly for drinking water – mentioned that in the last eight years, World Vision and its West Africa Water Initiative (WAWI) partners have taught them how to use the water for irrigation, which has brought improvement to their lives including a radio set he now owns (see photo 1).

    When asked how they manage the water sources and what the state of sanitation was in the village, he said, “The village chief appointed me as the one responsible for managing the water here.” If anyone including people from outside their village needed to take water for any purpose, he should be informed, and there is no charge for using the water. Though the dam never dries completely, there are times when the water almost gets finished (see photo 2). It has also not been desilted due to lack of funds. The interaction with Mr. Mahama reveals that if the community could contribute toward desilting the dam it will be able to store more water. He also views water as a gift from God rather than a resource that needs to be used and managed cautiously.

    gbulung_ag_use.jpg

    On the part of sanitation, open defecation was the common practice for most people in the community.  However, they travel a little bit far (over 100 m) to ease themselves so that their waters do not get contaminated with the feces. As for treating the water at the household level before use, he said they drink water from two newly installed hand-pump wells though not enough for everyone. They do drink physically treated water from the dam whenever there is water scarcity. Though Mr Mahama acknowledged that sometimes they get sick from taking the water, Moringa tree is their best medicine and solution to all their malaria, boils, fever, diarrhea and even snake bites.

    From this interaction, there is need for proper water resource management and appropriate sanitation facilities such as latrines in Gbulung to reduce water scarcity in the community.

    • Twitter
    • Facebook
  • Bottled and Sold: What’s Really in Our Bottled Water

    My new book on bottled water is out, at last. “Bottled and Sold: The Story Behind Our Obsession with Bottled Water” (Island Press, Washington) has apparently (according to reports from my secret field agents) started appearing in book stores. You’ve been able to order it online for a while through Island Press, Amazon, Barnes and Nobles, and other places.

    There are some great stories in the book: here is a little one, about what’s sometimes found in our bottled water.

    You don’t find what you don’t look for. This maxim holds true for arms control, as Ronald Reagan noted. And it holds true for contaminants in bottled water. One would think and expect that bottled water would be cleaner than our tap water. But is it?

    The system for testing and monitoring the quality of bottled water is so flawed that we simply have no comprehensive assessment of actual bottled water quality. Don’t misunderstand me. The inadequacies of U.S. rules for testing bottled water do not mean that bottled-water quality is poor. If bottled water was monitored as consistently, frequently, and accurately as tap water, the evidence might show that it was just as good, or even better on average, than tap water. Given how much consumers pay for it, we certainly have the right to expect it to be better.

    But we’re just not looking carefully enough. And the bad news is that when we do actually look, we find evidence that there are potentially serious quality problems with bottled water, lurking just under the cap. Even worse, outside of the U.S. (where sometimes bottled water really needs to be better than tap water) there is growing evidence that bottled water quality can be terrible.

    Most of our tap water is completely safe; most of our bottled water is probably completely safe. But to know for sure, we must look carefully. And when we do actually look, we sometimes find more than we bargained for. The most famous example is when Perrier was discovered in 1991 to be contaminated with benzene. But this example is not the only one.

    Water Number: More than 100. After months of requests and two Freedom of Information Act requests to the US Food and Drug Administration (which regulates some bottled waters), I got a list of recalls of bottled waters in the U.S. Combined with other research, I ultimately compiled a list of more than 100 bottled water recalls, affecting millions of bottles of water.

    This list (posted here) includes a remarkable list of contaminants. In addition to the benzene found in Perrier, bottled water has been found to contain mold, sodium hydroxide, kerosene, styrene, algae, yeast, tetrahydrofuran, sand, fecal coliforms and other forms of bacteria, elevated chlorine, “filth,” glass particles, sanitizer, and in my very favorite example, crickets.

    Crickets_are_not_for_bottled_water

    Yes, crickets. In 1994, a bottler in Nacogdoches, Texas issued a recall for sparkling water found to be contaminated with crickets. The water was distributed in Alabama, Florida, and Georgia and the recall notice wasn’t issued until seven months after being bottled and distributed, making it unlikely that consumers were notified in time to avoid buying the contaminated bottles. Maybe they thought it was a bonus, like that worm in tequila, or the weird things sometimes found in flavored vodkas.

    However you feel about crickets, my guess is you don’t want them in your bottled water. (Photo: Steve Jurvetson from Menlo Park, USA)

    In addition to bottled-water quality, the book talks about advertising and marketing, weird bottled waters claims, disappearing water fountains, conflicting and weak laws protecting consumers, and the growing revolt against bottled water. I’ll post a few more times in the coming months about some of these issues. But if you want the whole story, get the book!

    Peter Gleick 

    (posted at the San Francisco Chronicle’s SF GATE, from England, where I’ve been grounded by the volcano)
    April 17 2010 at 08:00 AM

    Purchase a copy of the book from Island Press.

    Bottled Water Recalls Summary Table

    Learn more about bottled water.

     

    • Twitter
    • Facebook
  • SFGate: Flushing Water and Money Down the Drain

    By Peter Gleick

    This essay was originally printed in the San Francisco Chronicle on October 12, 2006.

    Exciting developments in the high-efficiency toilet market may sound like an oxymoron. But installing these water-efficient fixtures throughout California could free up more water than any proposed reservoir or water-supply project – with none of the adverse environmental consequences and at a tiny fraction of the economic or political cost. Recognizing this potential, the Assembly and Senate passed AB2496, a bill that would have paved the way in the coming years for the adoption of new, high-efficiency toilets throughout the state. Gov. Arnold Schwarzenegger, however, vetoed the bill, and in doing so flushed away enough high-quality potable water to meet the needs of millions of Californians.

    Inefficient toilets in California waste a tremendous amount of water and money. The Pacific Institute, the institute I co-founded to research and analyze issues on development, environment and security, estimates that replacing existing toilets with high-efficiency models could save California more than 130 billion gallons of water every year. That is more water than we get from Hetch Hetchy reservoir, enough to satisfy the needs of approximately 1.5 million California residents.

    The water we are flushing is water that we already capture in reservoirs or draw from rivers, transport across the state and purify to drinking-water standards. Once used, this water must be treated and disposed. These processes are expensive and often energy intensive — 19 percent of California’s electricity is consumed by water systems to pump, clean, heat and treat water — yet we continue to flush unnecessarily precious water down our toilets. Saving water and reducing the generation of wastewater could save consumers hundreds of millions of dollars annually.

    California used to be the leader in the area of water conservation and efficiency. More than a decade ago, we pioneered the move toward water-efficient fixtures in our homes and industries. As a result, our population and economy have continued to grow while total water demands have leveled off. Indeed, we use less water today per person in California than we did more than 50 years ago — a fact that most Californians, and indeed most water policymakers, don’t know or appreciate. These improvements in water-use efficiency have eliminated the need for expensive and controversial new supply projects, reduced the damage to our ecosystems, and saved vast sums of money. But we’ve let our lead slip away.

    Water use is starting to creep back up because of the failure of our leaders to continue to apply well-understood technologies and policies to reduce wasteful and inefficient uses. The progress we have made will ultimately be overwhelmed by a growing population if efforts are not made to further reduce wasteful practices.

    Many state leaders on both sides of the aisle — including U.S. Sen. Dianne Feinstein, D-Calif. — still fail to recognize California’s conservation and efficiency potential and regularly call for the construction of new reservoirs or new subsidies for expensive ocean desalination plants. Not only would any new reservoir be costly and environmentally controversial, no proposed reservoir could possibly yield as much water as AB2496 would have freed up. And given desalination’s extremely high operating and electricity costs – to say nothing of its impact on local marine ecosystems – it makes no sense to produce expensive desalinated water just to flush it down inefficient toilets.

    In his veto message, the governor stated that we need to study these toilets more. Yet we already know that they are standard in Australia, Japan and other countries. Dozens of models from a wide range of manufacturers have been extensively tested here as well and many of them perform better than toilets already on the market.

    A rational water policy requires that we make the best use of the scarce and valuable water we have. That will require that California return to its position of national leadership in the area of water efficiency and conservation, not just in our homes, but in our industries and on our farms. The Pacific Institute has found that California can actually cut its wasteful use of water by 20 percent in the next 25 years with expected population growth, a healthy agricultural sector and a vibrant economy. We won’t get there if the governor vetoes the steps we’re trying to take in that direction.

    Peter H. Gleick, Ph.D, is president of the Pacific Institute for Studies in Development, Environment, and Security, a nonpartisan Oakland-based think tank. He is a MacArthur Fellow.

     

     

    • Twitter
    • Facebook
  • Research in India: Smelling Like Petrol

     

    For three months in 2005-2006, Pacific Institute Program Director Meena Palaniappan will be conducting research in India. This article is part of a series of diary entries in which Palaniappan will elaborate on her experiences abroad.

     

    While I am in Chennai working on water issues, I wear the scent of another major problem in Indian cities. I often come home from my research trips in Chennai smelling like a gallon of petrol. Chennai’s air pollution – and air pollution in most cities in India – is bad and getting worse.

    Air pollution is on the rise, even in garden city, thanks to two-stroke engines

    For many years Chennai was the garden city, greener than most cities and with cleaner air by luck of its location on the seashore. But Chennai’s luck is changing. The growth of population and the spread of the city are certainly huge problems. An even bigger problem is the growth of private transportation. According to Sunita Narain, Director of the Center for Science and Environment, while population in Chennai has increased by 10% in the last decade, it has seen a 108% growth in private vehicles. I can feel the difference in the air, and on my clothes.

    The growth in private vehicles has a number of contributing factors. One is the failing public transportation system — cities are not investing enough to keep up existing low capital sources of public transport. Often highly expensive urban rail projects are chosen over replacing and expanding bus service through dedicated lanes. Another factor is increasing incomes. This growing middle class is now getting access to capital through new loan programs, which are making purchases like cars and homes accessible. I think that to protect themselves from the growing air pollution, anyone who is able is purchasing a car, tightly shutting the windows, and turning on the AC. These large, moving, climate-protected rooms roam throughout the city.

    Delhi is the worst Indian city for air pollution. Like Los Angeles, it is located in an area unsuitable for dispersing air pollution, causing pollutants to be trapped over the city. But, Delhi is also full of private vehicles – it has more cars than all of the other three major cities combined. The levels of respirable particulate matter in Delhi, or what is called in the U.S. PM10 (particulate matter smaller than 10 microns in size) are astronomical. In 2000-2001, PM10 levels in Delhi were about 180 micrograms (ug) per cubic meter (m3), over three times the U.S. standard of 50 ug/m3.

    Three wheel double-stroke engine “autos,” one of the worst polluters on the roads, puffing out unburned fuel

    Some of the worst polluters on urban streets are “autos” and motorbikes. Autos, or small three wheeled taxis, abound in Chennai. Since 1990, the number of autos on Chennai’s streets has doubled, and about 40,000 autos ply Chennai streets. Aside from the sheer number of autos and motorbikes on the road, their two-stroke engines make them major air pollution culprits. The two-stroke engine is a lighter and cheaper engine that requires oil mixed into the petrol for operation. With each revolution of the engine, a cloud of burned and unburned fuel escapes. In Delhi, 35% of particulate matter pollution from vehicles is from two-wheeled motor bikes. The above view from my window is typical: an auto followed by its signature huge cloud of smoke.

    There have been some improvements in India’s cities, including requiring pre-mixed low-smoke oil for two- and three-wheelers. Low-sulfur and lead free fuel has also helped. Delhi has done the most in this area, mostly out of necessity. The phase-out of older taxis and autos has seen the addition of nearly 60,000 compressed natural gas (CNG) vehicles to the road in Delhi. In addition, all diesel buses have been phased out.

    The road to clean air in Indian cities will be long and – with the growing number of vehicles – it will be difficult to navigate. But in Chennai, amidst the petrol, you can smell the hope.

    • Twitter
    • Facebook
  • Research in India: What Would Gandhi Do?

     

    For three months in 2005-2006, Pacific Institute Program Director Meena Palaniappan will be conducting research in India. This article is part of a series of diary entries in which Palaniappan will elaborate on her experiences abroad.

     

    I am always thoroughly impressed and humbled by the dedication and commitment of my NGO colleagues and concerned residents who are involved in the struggle to make Chennai more sustainable. The city seems chock full of retired engineers and scientists who are making their own homes more sustainable by building comprehensive rainwater harvesting systems, separating out garbage, recycling the greywater (wash water) from their homes, and trying to spread these practices to others.

    Every few years I come dashing through Chennai or hereabouts on some environmental project, to learn from and to provide assistance to the NGO community. Yet, each time I come, the same core set of people seem to be tirelessly working on improving things in Chennai. They are getting older and wiser, and they are not giving up. It’s a wonderful, heartening thing to see.

    Luckily, some new energy is often inserted into the mix and younger folks are giving new life and new strategies to the old guard. There is definitely a difference in attitude and strategy. Younger ones seem more activist oriented, more suspicious of government and corporates, and less willing to work within the system or accept compromise.

    Young, old, rural or urban, there is a phrase that always seems to cause many to pause, “What would Gandhi do?” or what some have shortened to WWGD. More than 50 years since his assassination, the pedestal that the Mahatma occupied has only grown taller. And for those that are engaged in variations of the same social and political battle that Gandhi waged, there is no better model or guide than the original himself.

    What would Gandhi do? It is a question that many have wondered about. How would India have been different if we had Gandhi for a few more years? Perhaps he would have provided a counter to the big infrastructure/industrialization bent of our equally revered first Prime Minister Jawarhalal Nehru. Are we living as Gandhi intended? Probably not. Mega cities that only keep growing are not the India of a thousand villages that Gandhi had hoped for. Nor is this race after Western-style development what Gandhi had intended when he envisioned the Third World defining a new path to development.

    Yet, these social activist Indians are doing their best to live and to create projects in the Gandhian ethic. Whether it is creating self-reliant villages in tsunami-effected areas, or fighting for decentralized options for basic needs instead of mega-projects, the Gandhian ethic is alive and well in India.

    One man I met in Chennai has turned his entire house into a fully water self-sufficient building, using rainwater harvesting and greywater reuse, with disinfected rainwater used for drinking. His family performs tasks in such a way as to not introduce too much food or chemicals into the grey water; for example, the first wash of kitchen dishes is separated to use in the compost. The above picture shows his in-home disinfection system.

    Another man I met is a builder with the best reputation in Chennai, earned by building quality apartments and not giving or taking bribes. Years back, he was upset about a letter to the editor accusing apartment developers as being the reason for water shortages in Chennai. He decided to implement systems in his apartment complexes that would save all greywater from bath and washing, treat it, and reuse it for flushing toilets and landscaping. Recently semi-retired, the builder has self-published the book Self Reliance in Water: The Alacrity Experience detailing the specific designs to install rainwater harvesting and greywater reuse systems in the home.

    “These designs are not things one can patent, and they are critical for the future of water in our city,” he told me. “So, I thought why not publish this manual and distribute it widely so that everyone will have what they need to solve the city’s water problems.”

    To propagate and not patent good ideas—this is what Gandhi would have done. Hopefully with many more like him, a new India can emerge… one that the Mahatma would be proud of.

    • Twitter
    • Facebook
  • Research in India: Happy Pongal!

    Harvest celebrations are a commonality across cultures, a time to think about where our food comes from and give thanks. Pongal is the time for that in Chennai, a major celebration of the harvest that happens in Tamil Nadu the middle of every January. After being deluged (or at least hopefully somewhat blessed) by the northeastern monsoons in the months of October and November, farmers are now ready to bring forth the harvest.

    Happy PongalSakkarai Pongal

    It took 3 women 2 hours to complete

    Like good BBQ in the U.S., the traditional flavor of these dishes comes from cooking them over a wood burning stove. In my uncle’s relatively modern Chennai home, wood stoves were constructed for the occasion, and four pots of rice were put to boil inside the house. You can see how smoky the interior is in this picture of my aunt putting some milk in the Pongal pots.

    My aunt putting some milk in the Pongal pots, over a highly polluting indoor wood stove

    Unfortunately, burning wood indoors greatly adds to indoor air pollution, a major problem in many developing countries. Billions of people use poorly-ventilated wood burning stoves. This pollution can contribute to numerous respiratory problems, including pneumonia and lung cancer, as well as cataracts and possible blindness. In poor countries worldwide, indoor smoke from solid fuels is the second-greatest environmental risk factor contributing to premature death (the greatest risk factor is what brought me to Chennai: water, sanitation, and hygiene). It is also the second-greatest risk factor in mid-income countries (after occupational risks and just above water, sanitation and hygiene). The World Health Organization found that indoor smoke was responsible for 1.7 million premature deaths in 2000. Thankfully for my uncle’s family, they do not need to rely on these stoves every day.

    The last day of Pongal, called Kanu, is meant for meeting friends and family, and the beaches and parks were overflowing with families. On the last day of Pongal I was sitting in the offices of various officials trying to organize speakers and data for an upcoming workshop I will be co-hosting on wastewater treatment. Many of these folks weren’t acting like my friends, but nevertheless…

    All in all, a wonderful holiday to celebrate the coming of the new harvest and be thankful for family, friends, and good food.

    • Twitter
    • Facebook
Page 15 of 16« First...1213141516