Appendix B

Outdoor Residential Water Use and the Potential for Conservation

Appendix B describes methods used to estimate baseline outdoor residential water use in California and the potential for reducing that water use for representative landscapes, lots, and conservation techniques in California. We tried several different methods to estimate a baseline value for outdoor water use. The results ranged from 574,503 to $1,652,806$ AF (Table B-1).

Table B-1
Estimates of outdoor water use (2000)

Method	Result (AF)
Summer-winter	574,503
Average month	848,941
Minimum month	907,410
Hydrologic region	$1,091,124$
Representative city	$1,652,806$

The following is a more detailed description of these results.

Hydrologic region method

We used CDWR's values ${ }^{1}$ population by hydrologic region, percent outdoor water use by region (CDWR 1994b, Bulletin 166-4, table 3-2), and outdoor residential water use as a percentage of total outdoor urban use (CDWR 1994a, Bulletin 160-93, table 6-9) and multiplied them to get total residential outdoor water use (Table B-2). The equation for each region was as follows:

Water use = population * urban water use * percentage of urban that is residential * percentage of use that is outdoor * conversion factor.

For North Coast, for example, the calculation was:
6,000,00 people * 137 gped * $0.52 * 0.26 * 365$ days per year/325,851 gal per AF $=$ 12,449 AFY

[^0]Table B-2
Estimating Outdoor Water Use: Hydrologic Region Method

Hydrologic Region	Population (millions)	Percentage of Use that is Outdoor ${ }^{2}$	Percentage of Urban Residential 3	Water Use $(\mathrm{gpcd})^{4}$	Total Residential Outdoor use
North Coast	0.6	26	52	137	AFY

The next three methods were based on water use data by month and the assumption that residential use accounts for about 57 percent of urban use, both from Bulletin 166-4. These data are shown in Tables B-3 to B-5.

Table B-3
Bulletin 166-4 Water Use Data

Month	Days per month	Total Urban Wpater Use gped	
January	31	145	2,562
February	28.25	150	2,415
March	31	170	3,004
April	30	180	3,078
May	31	205	3,622
June	30	225	3,848
July	31	250	4,418
August	31	245	4,329
September	30	225	3,848
October	31	200	3,534
November	30	160	2,736
December	31	150	2,651
Total			

Summer-winter method

Another method for estimating outdoor use is the "summer-winter" approach. Using CDWR's Bulletin 166-4 estimates of average gallons per capita per day, we calculated monthly use. Our estimate was then based on the assumption that the

[^1]difference between winter (October through March) and summer (April through
September) use was approximately equal to outdoor use. This assumption is supported by Skeel and Lucas (1998) who found that for single-family homes in Seattle, outdoor water use made up more than 95 percent of the observed increase in peak summer consumption. Eighty-five percent of this increase was due to landscape irrigation and less than 5 percent resulted from a slight increase in indoor use in summer months. For example, for January the calculation was:
\[

$$
\begin{gathered}
\text { Water use }=31 \text { days } * 145 \mathrm{gpcd} * 0.57 * 30,000,000 \text { people } / 325,851 \text { gallons per } \mathrm{AF}= \\
235,888 \mathrm{AF}
\end{gathered}
$$
\]

We found the difference between summer and winter use, which we used as the estimate for total outdoor use, to be $574,503 \mathrm{AF}$. These results indicate that outdoor use accounts for about 16 percent of total use and 27 percent of summer use. Both the outdoor use value and percentage are somewhat lower than what we expected, based on experience and the literature reviewed. Part of the reason for the low result may be that homeowners in some regions do irrigate between October and March. By assuming that all of the October through March water use is for indoor purposes we are likely inflating indoor water use and underestimating outdoor use.

Minimum month method

We used the same Bulletin 166-4 data as the second method, calculated monthly water use and applied a minimum month methodology. In this approach, the lowest-use month (January) was assumed to represent indoor use and all differences between the other months and the January value were considered to be outdoor use. We aggregated these differences to determine a value for total outdoor use. This method is based on the assumption that indoor use remains fairly consistent across seasons and therefore provides a reasonable estimate of annual indoor demand. This assumption was tested by the REUWS (Mayer et al. 1999), which found that, except for the Tampa site, there were no significant differences in indoor use during different seasons.

For the minimum month method we assumed that January, the lowest use month at 145 gpcd , represents indoor use. The difference between January use and water use all other months, calculated on a month-per-month basis (Table B-4), then represents outdoor use. These differences were calculated, summed and multiplied by the current population to yield a result of $907,410 \mathrm{AF}$. This value indicates that approximately 25 percent of total use or 43 percent of summer use is for outdoor purposes.

Table B-4
 Estimating outdoor water use: Summer winter, Minimum month, and Average month methods

Month	Days per month	Total Urban Water Use		Outdoor water use			
				Minimum month method Average month method			
		gped	gpem	gped	AF (statewide)	gped	AF (statewide)
January	31	145	2,562	0	0		
February	28.25	150	2,415	5	7,413	2	2,471

March	31	170	3,004	25	40,670	22	35,248
April	30	180	3,078	35	55,102	32	49,854
May	31	205	3,622	60	97,609	57	92,186
June	30	225	3,848	80	125,947	77	120,699
July	31	250	4,418	105	170,816	102	165,393
August	31	245	4,329	100	162,682	97	157,259
September	30	225	3,848	80	125,947	77	120,699
October	31	200	3,534	55	89,475	52	84,052
November	30	160	2,736	15	23,615	12	18,367
December	31	150	2,651	5	8,134	2	2,711
Total					$\mathbf{9 0 7 , 4 1 0}$		$\mathbf{8 4 8 , 9 4 1}$

Average month method

For the average month method we used the average of the three lowest water use months, December to February, rather than the minimum month used in the previous method, to represent indoor use (also in Table B-4). The result we obtained was total outdoor use of $848,941 \mathrm{AF}$. We assume that it is somewhat lower than the minimum month result for the same reason that the summer-winter month result was low. There may be some outdoor use during the winter period that gets lost as indoor use, thereby bringing down the outdoor use value.

Representative city method

For the Representative city method we used data CDWR had collected from 20 cities across the state (Table B-5). The data available from CDWR includes the percentage of urban use that is outdoor (Matyac, personal communications, 2000) and that is residential (CDWR 1994a, Table 6-9), population by hydrologic region and city (CDWR 1994a, Table 4-1), and per capita urban water use (CDWR 1994a, Table 4-8). The population of the representative cities adds up to about one-third of the state's population, we used the water use statistics for these cities as proxies for water use by hydrologic region. There were cases where, within a hydrologic region, water use and the percentage used outdoors for the representative cities were considerably different. For example, in the San Francisco region water use ranges from 132 to 196 gpcd and the proportion used outdoors ranges from 19 to 34 percent, almost double. To account for these differences within hydrologic regions we weighted the populations of the individual cities.

Water use for each hydrologic region was calculated as follows:
Water use for region $=[\Sigma$ (city population/sum of populations) * hydrologic region population * water use by city * percent outdoor * percent urban] * conversion factor

For the San Francisco Bay region, for example, the calculation was as follows:
Population of San Francisco Bay hydrologic region $=5,500,000$

Population of representative cities within the region $=1,200,000+170,000+723,959=$ 2,093,959

```
Water use for the San Francisco Region = [(1,200,000/2,093,959*5,500,000*196*0.55*0.34) + \((170,000 / 2,093,959 * 5,500,000 * 153 * 0.55 * 0.46)+\) \((723,959 / 2,093,959 * 5,500,000 * 113296 * 0.55 * 0.19)] * 365 / 325,851=179,005\) AFY
```

Using the representative city method, total outdoor water use for the state in 1990 was estimated to be $1,652,806$ AF (Table B-5). This value may be somewhat high - we contacted a number of the representative cities and found that their water use figures were lower than those provided by CDWR by up to 27 percent. ${ }^{5}$

[^2]| Urban
 water
 use in
 gpcd | Percent
 of use
 that is
 outdoor | Percent of
 use that is
 residential | Pop.
 by
 hydrologic
 region | Pop. by
 city | Weighted
 population | Water use
 in AFY |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 153 | 40 | 60 | $1,300,000$ | 108,777 | 727,613 | 30,181 |
| 177 | 38 | 60 | | 85,571 | 572,387 | 25,913 |
| 349 | 63 | 58 | 500,000 | 8,448 | 105,990 | 15,031 |
| 221 | 47 | 58 | | 31,405 | 394,010 | 26,745 |
| 156 | 46 | 52 | 600,000 | 113,261 | 113,261 | 4,752 |
| 179 | 48 | 38 | 100,000 | 21,586 | 21,586 | 796 |
| | | | | | | |
| 296 | 59 | 56 | $2,200,000$ | 39,970 | 214,822 | 23,714 |
| 290 | 53 | 56 | | 369,365 | $1,985,178$ | 191,042 |
| 196 | 34 | 55 | $5,500,000$ | $1,200,000$ | $3,151,924$ | 130,857 |
| 153 | 45 | 55 | | 170,000 | 446,523 | 18,860 |
| 132 | 19 | 55 | | 723,959 | $1,901,553$ | 29,270 |
| 187 | 65 | 70 | $1,400,000$ | 56,155 | 294,338 | 28,165 |
| 336 | 52 | 70 | | 210,943 | $1,105,662$ | 152,624 |
| 180 | 35 | 59 | $16,300,000$ | $3,485,557$ | $8,946,850$ | 368,986 |
| 269 | 50 | 59 | | 164,676 | 422,696 | 37,516 |
| 196 | 35 | 59 | | $2,700,000$ | $6,930,454$ | 314,204 |
| | | | | | | |
| 247 | 63 | 63 | 500,000 | 28,295 | 205,128 | 22,698 |
| 340 | 64 | 63 | | 40,674 | 294,872 | 45,522 |
| 273 | 60 | 67 | $1,500,000$ | 354,091 | $1,235,920$ | 151,601 |
| 285 | 61 | 67 | | 75,659 | 264,080 | 34,330 |
| | | | | $9,990,382$ | $29,334,847$ | $\mathbf{1 , 6 5 2 , 8 0 6}$ |

Outdoor Residential Water Savings: Method Using Representative Lots and Climates

Landscape water use and savings from irrigating more efficiently are tricky to estimate because of all the unknowns and data limitations, described in the full report in Section 3, which provides statewide estimates of potential savings. To evaluate the economic feasibility of the options, we needed to look at concrete scenarios that could be discretely priced. It was not realistic to try and price each of the different options at a statewide level. Instead, we developed "representative" landscapes from which we could estimate water use, potential savings, and associated costs. The idea was for these landscapes to capture representative lots in terms of landscape (size, turf area, etc.) and climate conditions around California.

Climate conditions vary from cool and moist in the north and coastal areas to hot and arid conditions in the south and Central Valley regions. Precipitation data and landscape requirements by climate type are available through CIMIS and a variety of other sources. The structure of our representative landscapes is based on a set of highquality landscape data from the East Bay Municipal Utility District's (EBMUD) 1995 Water Conservation Baseline Study and from information on climates and lot sizes around the state. Opitz and Hauer (1995), for example, provide information about landscape and irrigation system characteristics, broken down to reflect differences between the eastern and western parts of the EBMUD service area (Table B-6). The two areas have important socioeconomic (the area east of the hills tends to have higher incomes and larger homes) and physical (the east has a warmer and drier climate than the area west of the hills) differences. In constructing the representative landscapes our goal was to establish a relationship between lot size, area (potentially and actually) landscaped, turf area, and irrigated area. We constructed a typical "small" lot based on a cooler, more humid climate, and a "large" lot based on a warmer, more arid climate to see if, and how, these factors varied. Then we calculated the irrigation requirements and potential savings for these different landscapes and climates.

Table B-6: Sample landscape characteristics for single-family homes served by EBMUD

Lot Characteristics (ft ${ }^{\mathbf{2}}$)	Complete Survey	East	West
Total lot size	$\mathbf{9 , 5 0 0}$	$\mathbf{1 9 , 9 5 2}$	$\mathbf{5 , 6 1 2}$
Hardscape Area	3,727	5,419	3,121
Landscape area	5,696	14,533	2,481
Irrigated area	2,513	5,184	1,459
Turf area	$\mathbf{9 8 7}$	$\mathbf{1 , 6 2 8}$	$\mathbf{7 2 7}$
Percentage of lot that is hardscape	39	27	56
Percentage of lot that is landscape	60	73	44
Percentage of landscape that is irrigated	44	36	59
Percentage of landscape that is turf	17	11	29
Percentage of irrigated area that is turf	39	31	50

Source: Opitz and Hauer 1995
The east-side lots are about 3.5 times larger than those on the west side but the hardscape (including the building footprint) area is only about 60 percent larger. The
east-side sites have a larger proportion of their lot landscaped; about 73 percent of the lot compared with about 44 percent on the west side. The east-side homes irrigate only 60 percent as much of their landscape and have about one-third the proportion of turf as do the west side homes, but their average turf and irrigated areas is larger because of the difference in average lot size. On average, the east-side homes irrigate about $5,184 \mathrm{ft}^{2}$ and have $1,628 \mathrm{ft}^{2}$ of turf while west-side homes irrigate about $1,459 \mathrm{ft}^{2}$ and have $727 \mathrm{ft}^{2}$ of turf. From this information, we constructed two representative landscapes:

Large landscape:
Lot size: 19,950 ft^{2}
Landscape area: $14,530 \mathrm{ft}^{2}$
Irrigated area: 5,180 ft^{2}
Turf area: 1,630
Small Landscape:
Lot size: 5,610 ft^{2}
Landscape area: 2,480 ft^{2}
Irrigated area: $1,459 \mathrm{ft}^{2}$
Turf area: $727 \mathrm{ft}^{2}$
The next step was to estimate water use. CIMIS data was used to obtain monthly precipitation and ET information (http://wwwdpla.water.ca.gov/cgibin/cimis/cimis/data/get data). For the east of the hills site we used data from the Walnut Creek CIMIS station, and for the west-side site we used data from the Oakland foothills station. We calculated the water requirements for all four scenarios, varying landscape size and climate permutations (large landscape coastal and arid climates, small landscape coastal and arid climates). The amount of water required by turf was calculated by multiplying turf acreage by one of three ETo coefficients: 1.3 ETo , the amount of water we estimate is currently being used to irrigate turf; 1.0 ETo , the amount typically recommended; and 0.8 ETo , the amount that could be achieved with proper scheduling. The amount of water used for landscape irrigation was calculated using the following equation:

$$
\text { Landscape Water Use }(\mathrm{gal} / \mathrm{yr})=\frac{\text { Required irrigation }(\mathrm{in} / \mathrm{yr})^{*} E T o^{*} \text { acreage }\left(\mathrm{ft}^{2}\right)}{\frac{12 \mathrm{in}}{\mathrm{ft}} * \frac{.1337 \mathrm{ft}^{3}}{\mathrm{gal}}}
$$

ET_{o} is the variable that represents the efficiency with which the landscape is being maintained. CDWR estimates that statewide ET_{o} is about 1.3 for turf (which means that 30 percent more water is applied than is typically recommended) and 1.0 for non-turf (CDWR 1998). We applied these ET_{o} estimates to our representative landscapes to determine baseline use. To determine potential savings we used the same physical landscape and ratio of turf to non-turf but applied lower ET_{o} values. Studies performed across the state and country and our communications with professionals in the field suggest that ET_{o} rates of 0.8 for turf and 0.6 for non-turf were a reasonable target for landscape conservation programs. Our calculations indicate that, depending on the size
and climate conditions of the landscape, anywhere from about 17,000 to 65,000 gallons of water could be saved every year per site (see Table B-7 and the following scenarios).

Table B-7: Baseline and potential water use for representative landscapes

Water Use (gpy)	Large, Arid	Large, Coastal	Small, Arid	Small, Coastal
Baseline	166,877	147,788	49,341	43,694
Potential	101,084	89,521	30,032	26,595
Savings	65,793	58,267	19,309	17,099

Scenario B-1a: Large Landscape, Arid Climate (gallons per year)

Irrigation rates---percentage $\mathrm{Et}_{\text {}}$						Current	Water Use (gpy)
	1.3		0.8	0.6			
Jan Feb	Turf water use			Non-turf water use			
	1,583	1,218	974	2,660	1,596		
	1,979	1,522	1,218	3,325	1,995		
March	3,825	2,943	2,354	6,428	3,857		
April	5,804	4,465	3,572	9,752	5,851		
May	7,783	5,987	4,789	13,077	7,846		166,877
June	8,706	6,697	5,358	14,628	8,777		101,084
July	9,762	7,509	6,007	16,401	9,841	Potential savings	65,793
Aug	8,442	6,494	5,195	14,185	8,511		
Sept	6,991	5,378	4,302	11,747	7,048		
October	4,221	3,247	2,598	7,092	4,255		
November	1,979	1,522	1,218	3,325	1,995		
Dec	1,187	913	731	1,995	1,197		
Total	62,263	47,894	38,315	104,614	62,769		

Scenario B-1b: Large landscape, coastal climate (gallons per year)

Irrigation rates---percentage Eto						Water Use (gpy)	
	1.3	1	0.8	1	0.6		
	Turf water use			Non-turf water use			
Jan	1,979	1,522	1,218	3,325	1,995		
Feb	1,979	1,522	1,218	3,325	1,995		
March	3,694	2,841	2,273	6,206	3,724		
April	5,145	3,957	3,166	8,644	5,186		
May	6,728	5,175	4,140	11,304	6,782		147,787
June	6,991	5,378	4,302	11,747	7,048	Current Potential	89,521
July	7,915	6,088	4,871	13,298	7,979	Potential savings	58,267
Aug	7,255	5,581	4,465	12,190	7,314		

Sept	6,332	4,871	3,896	10,639	6,383
October	4,089	3,146	2,516	6,871	4,123
November	1,847	1,421	1,136	3,103	1,862
Dec	1,187	913	731	1,995	1,197
Total	$\mathbf{5 5 , 1 4 1}$	$\mathbf{4 2 , 4 1 6}$	$\mathbf{3 3 , 9 3 3}$	$\mathbf{9 2 , 6 4 7}$	$\mathbf{5 5 , 5 8 8}$

Scenario B-2a: Small landscape, Arid climate (gallons per year)

Irrigation rates---percentage Eto						
	1.3	1	0.8	1	0.6	Water Use (gpy)
	Turf water use			Non-turf water use		
Jan	707	544	435	547	328	
Feb	884	680	544	684	411	
March	1,708	1,314	1,051	1,323	794	
April	2,592	1,994	1,595	2,007	1,204	
May	3,475	2,673	2,139	2,692	1,615	Current use 49,341
June	3,888	2,991	2,393	3,011	1,807	Potential use 30,032
July	4,359	3,353	2,683	3,376	2,026	Savings 19,309
Aug	3,770	2,900	2,320	2,920	1,752	
Sept	3,122	2,402	1,921	2,418	1,451	
October	1,885	1,450	1,160	1,460	876	
November	884	680	544	684	411	
Dec	530	408	326	411	246	
Total	27,805	21,389	17,111	21,536	12,921	

Scenario B-2b: Small landscape, Coastal climate (gallons per year)

[^0]: ${ }^{1} 1990$ values were used for this analysis since the latest version of Bulletin-160 (CDWR 1994a) does not provide the proportion of urban use that is residential.

[^1]: ${ }^{2}$ B166-4 p.24, table3-2
 ${ }^{3}$ table 6-9 B160-93
 ${ }^{4}$ b160-93 table 6-8

[^2]: ${ }^{5}$ For more information and a comparison of the values that we obtained with CDWR's estimates see: Gleick, P. H. and D. Haasz (1998).

