Seawater Desalination in California: Promise or Peril

Heather Cooley, Delta-Science Brown Bag September 22, 2014

PACIFIC INSTITUTE

Existing Seawater Desalination Plants

A handful of small plants, mostly for industrial purposes

Proposed Seawater Desalination Plants

15 proposed seawater desalination plants along the CA coast

and

2 in Mexico

Water Supply Diversity and Reliability

- Seemingly abundant new supply of water
- Largely independent of weather conditions, e.g., drought, climate change
- Source diversity
- Local control

Source: DWR website

Source: USGS website

Key Outstanding Issues

- Cost and financing
- Energy use and greenhouse gas emissions
- Marine Impacts
 - Intakes
 - Brine discharge

Key Issue: Cost and Financing

- Highly variable and site specific
- California: \$1,900
 to \$3000+ per
 acre-foot

Key Issue: Cost and Financing

- Municipal bonds, e.g., revenue and privateactivity bonds
- State and federal grants, e.g., Proposition 50 (\$22 million for 3 construction projects, 9 pilots and demos, and 5 feasibility studies)
- Low-interest loans, e.g., Proposition 84
- Private equity

What are Some of the Risks?

- Typical project risks permitting, construction, operation, financial risk, etc.
- Demand risk
 - Santa Barbara, California
 - 4 of the 6 plants built in Australia since 2006
 - Tampa Bay, Florida

Key Issue: Energy Use and GHG Emissions

12,000 - 18,000 kWh per million gallons

Theoretical minimum for RO is around 3,400 kWh per million gallons for 40% recovery (for RO process only)

Key Issue: Energy and GHG Emissions

Includes extraction, conveyance, and treatment

Key Issue: Energy and GHG Emissions

- Total energy costs are high, leading to increased exposure to short-term and long-term energy price variability.
- Long-term: CPUC estimates that electricity prices will rise by nearly 27% from 2008 – 2020
- Short-term: precipitation affects costs

PG&E's Retail Energy Rates Versus California's Two-Year Precipitation Totals for the Two Previous Years, 1982–2010

Correlation Between Precipitation and Retail Energy Price for Six CA Utilities

	Direction of Correlation	Correlation Coefficient	Pearson's R P-value	Mann-Kendall P-value
Pacific Gas and Electric (PG&E)	Ļ	-0.69	<0.001	<0.001
Southern California Edison (SCE)	Ļ	-0.49	0.005	0.003
San Diego Gas and Electric (SDG&E)	*	+0.31	0.05	0.32
Los Angeles Department of Water and Power (LADWP)	Ļ	-0.38	0.02	0.03*
Sacramento Municipal Utility District (SMUD)	Ļ	-0.59	<0.001	<0.001
Burbank-Glendale-Pasadena (BGP)	*	-0.25	0.15	0.10

Energy and GHG Emissions

- Global Warming Solutions Act
 - California must reduce greenhouse gas emissions to 1990 levels by 2020
 - 4.8 MMTCO₂e from the water sector

Expanding the state's seawater desalination capacity by 514 MGD would:

- Increase energy use by about <u>2,800 GWh</u> per year (1% increase above current electricity use)
- Generate <u>1.0 MMTCO₂e</u> annually (0.2% increase above current emissions)

Measure	Reduction (MMTCO ₂ e)	
Water Use Efficiency	1.4	
Water Recycling	0.3	
Water System Energy Efficiency	2.0	
Reuse Urban Runoff	0.2	
Increase Renewable Energy Production	0.9	
Public Goods Charge	TBD	
Total	4.8	

Reduce Energy and GHG Impacts

- Reduce total energy requirements
 - More efficient pumps and energy recovery devices
 - Higher-permeability membranes
 - Alternative desalination technologies, e.g., forward osmosis and membrane distillation
- Reduce greenhouse gas emissions
 - Renewable energy
 - Carbon offsets

Environmental Considerations

- Environmental benefits:
 - Source displacement
 - Climate change adaptation*
- And environmental risks:
 - Construction
 - Intakes *
 - Brine discharge *
 - Development
 - Greenhouse gas emissions *
 - Vulnerable to sea level rise

Marine Intakes

- Impingement fish and other large organisms are trapped on the intake screen, resulting in injury or death
- <u>Entrainment</u> plankton, fish eggs, and larvae, are killed during desalting process
- Impacts not well understood, site specific analysis and ongoing monitoring required

Minimizing Impacts from Intakes

- Design and operational measures
 - Locate in areas with low biological productivity
 - Reduce pumping during critical periods
 - Improve recovery rates

Minimizing Impacts from Intakes

- Technological measures
 - Behavioral deterrents (e.g., strobe lights)
 - Physical barriers (e.g., screens)
 - Subsurface intakes

Brine Discharge

- Brine
 - Salt, natural seawater constituents, chemical additives, heavy metals
- Brine is denser than seawater, tending to sink to the bottom
- Studies on brine impacts are "extremely limited, often not peer-reviewed, not readily available, or have flaws in the study design."

Minimizing Impacts from Brine Discharge

- Well-mixed, offshore environment
- Away from sensitive habitats
- Multiport diffusers
- Dilution
 - Power plant cooling water
 - In-plant dilution
 - Treated wastewater

Conclusions

- Seawater desalination is a small component of California's water supply portfolio, although interest in some coastal communities.
- The technology is viable, i.e., it works.
- The key issues are its relatively high cost, energy intensity (and associated GHG emissions), and impacts on the marine environment – all of which must be balanced against the availability of other options.

Thank you!

For more information, go to www.pacinst.org

654 13th Street, Preservation Park, Oakland, CA 94612 Phone: (510) 251-1600 Email: info@pacinst.org Web: www.pacinst.org

> PACIFIC INSTITUTE